
ORGANIC CHEMISTRY

John McMurry

NINTH EDITION

Periodic Table of the Elements

5 REASONS to buy your textbooks and course materials at

CENGAGE brain

- SAVINGS:
 Prices up to 75% off, daily coupons, and free shipping on orders over \$25
- CHOICE:
 Multiple format options including textbook, eBook and eChapter rentals
- **CONVENIENCE:**Anytime, anywhere access of eBooks or eChapters via mobile devices
- SERVICE:
 Free eBook access while your text ships, and instant access to online homework products
- STUDY TOOLS:
 Study tools* for your text, plus writing, research, career and job search resources
 *availability varies

Find your course materials and start saving at:

www.cengagebrain.com

Source Code: 14M-AA0107

Organic Chemistry

Ninth Edition

Organic Chemistry

John McMurry

CORNELL UNIVERSITY

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Organic Chemistry, Ninth Edition John McMurry

Product Director: Mary Finch
Product Manager: Maureen Rosener
Content Developers: Nat Chen, Lisa Weber
Product Assistant: Morgan Carney
Marketing Manager: Julie Schuster
Content Project Manager: Teresa Trego
Art Director: Andrei Pasternak
Manufacturing Planner: Judy Inouye
Production Service: Graphic World Inc.
Photo Researcher: Lumina Datamatics
Text Researcher: Lumina Datamatics
Copy Editor: Graphic World Inc.
Text Designer: Parallelogram Graphics
Cover Designer: Cheryl Carrington
Cover Image: Imagebroker.net/SuperStock

Compositor: Graphic World Inc.

© 2016, 2012, Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2014960022

Student Edition:

ISBN: 978-1-305-08048-5

Loose-leaf Edition:

ISBN: 978-1-305-63871-6

Cengage Learning

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**.

Printed in the United States of America Print Number: 01 Print Year: 2015

BRIEF CONTENTS

1	Structure and Bonding	1
2	Polar Covalent Bonds; Acids and Bases	28
3	Organic Compounds: Alkanes and Their Stereochemistry	60
4	Organic Compounds: Cycloalkanes and Their Stereochemistry	89
5	Stereochemistry at Tetrahedral Centers	115
6	An Overview of Organic Reactions	149
	Practice Your Scientific Analysis and Reasoning I: The Chiral Drug Thalidomide	182
7	Alkenes: Structure and Reactivity	185
8	Alkenes: Reactions and Synthesis	220
9	Alkynes: An Introduction to Organic Synthesis	263
10	Organohalides	287
11	Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations	309
	Practice Your Scientific Analysis and Reasoning II: From Mustard Gas to Alkylating Anticancer Drugs	351
12	Structure Determination: Mass Spectrometry and Infrared Spectroscopy	354
13	Structure Determination: Nuclear Magnetic Resonance Spectroscopy	386
14	Conjugated Compounds and Ultraviolet Spectroscopy	420
	Practice Your Scientific Analysis and Reasoning III: Photodynamic Therapy (PDT)	448
15	Benzene and Aromaticity	451
16	Chemistry of Benzene: Electrophilic Aromatic Substitution	478
17	Alcohols and Phenols	525
18	Ethers and Epoxides; Thiols and Sulfides	568
•	Preview of Carbonyl Chemistry	595
19	Aldehydes and Ketones: Nucleophilic Addition Reactions	604
	Practice Your Scientific Analysis and Reasoning IV: Selective Serotonin Reuptake Inhibitors (SSRIs)	649
20	Carboxylic Acids and Nitriles	653
21	Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions	679
22	Carbonyl Alpha-Substitution Reactions	727

BRIEF CONTENTS

23	Carbony	l Condensation Reactions	753
	Practice	Your Scientific Analysis and Reasoning V: Thymine in DNA	784
24	Amines	and Heterocycles	787
25	Biomole	cules: Carbohydrates	832
26	Biomole	cules: Amino Acids, Peptides, and Proteins	870
27	Biomole	cules: Lipids	907
	Practice	Your Scientific Analysis and Reasoning VI: Melatonin and Serotonin	939
28	Biomole	cules: Nucleic Acids	942
29	The Org	anic Chemistry of Metabolic Pathways	964
30	Orbitals	and Organic Chemistry: Pericyclic Reactions	1013
		Your Scientific Analysis and Reasoning VII: The Potent Antibiotic Endiandric Acid C	1034
31	Syntheti	c Polymers	1037
App	endix A:	Nomenclature of Polyfunctional Organic Compounds	A-1
Арр	endix B:	Acidity Constants for Some Organic Compounds	A-9
Арр	endix C:	Glossary	A-11
App	endix D:	Answers to In-Text Problems	A-31
Inde	ex		I-1

DETAILED CONTENTS

Structure and Bonding | 1

-1	Atomic Structure: The Nucleus	3	
-2	Atomic Structure: Orbitals	4	
-3	Atomic Structure: Electron Configurations	ϵ	
-4	Development of Chemical Bonding Theory	7	
-5	Describing Chemical Bonds: Valence Bond Theory	10	
-6	sp^3 Hybrid Orbitals and the Structure of Methane	12	
-7	sp^3 Hybrid Orbitals and the Structure of Ethane	13	
-8	sp^2 Hybrid Orbitals and the Structure of Ethylene	14	
-9	sp Hybrid Orbitals and the Structure of Acetylene		
-10	Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur	18	
-11	Describing Chemical Bonds: Molecular Orbital Theory	20	
-12	Drawing Chemical Structures	21	
	SOMETHING EXTRA Organic Foods: Risk versus Benefit	25	
	Summary	26	
	Key words	26	
	Working Problems	27	
	Exercises	27 a	

Polar Covalent Bonds; Acids and Bases | 28

©Kostyantyn Ivanyshen/ Shutterstock.com

2-1	Polar Covalent Bonds: Electronegativity	28
2-2	Polar Covalent Bonds: Dipole Moments	31
2-3	Formal Charges	33
2-4	Resonance	36
2-5	Rules for Resonance Forms	37
2-6	Drawing Resonance Forms	39
2-7	Acids and Bases: The Brønsted-Lowry Definition	42

2 1	Functional Crouns		60
ound emist	s: Alkanes and cry 60		
	Exercises		59
	Key words		58
	Summary		58
	SOMETHING EXTRA	Alkaloids: From Cocaine to Dental Anesthetics	56
2-12	Noncovalent Interactio	ns between Molecules	54
2-11	Acids and Bases: The L	ewis Definition	50
2-10	Organic Acids and Org		47
2-9	o e	Reactions from pK_a Values	46
2-8	Acid and Base Strength		44

Organic Compo Their Stereoche

3-1	Functional Groups	60
3-2	Alkanes and Alkane Isomers	66
3-3	Alkyl Groups	70
3-4	Naming Alkanes	73
3-5	Properties of Alkanes	78
3-6	Conformations of Ethane	80
3-7	Conformations of Other Alkanes	82
	SOMETHING EXTRA Gasoline	86
	Summary	87
	Key words	87
	Exercises	88

Organic Compounds: Cycloalkanes and **Their Stereochemistry** | 89

4-1	Naming Cycloalkanes	90
4-2	Cis-Trans Isomerism in Cycloalkanes	92
4-3	Stability of Cycloalkanes: Ring Strain	95
4-4	Conformations of Cycloalkanes	97
4-5	Conformations of Cyclohexane	99
4-6	Axial and Equatorial Bonds in Cyclohexane	101

CHAPTER

5-1	Enantiomers and the Tetrahedral Carbon	116
5-2	The Reason for Handedness in Molecules: Chirality	117
5-3	Optical Activity	121
5-4	Pasteur's Discovery of Enantiomers	123
5-5	Sequence Rules for Specifying Configuration	124
5-6	Diastereomers	131
5-7	Meso Compounds	133
5-8	Racemic Mixtures and the Resolution of Enantiomers	135
5-9	A Review of Isomerism	138
5-10	Chirality at Nitrogen, Phosphorus, and Sulfur	140
5-11	Prochirality	141
5-12	Chirality in Nature and Chiral Environments	145
	SOMETHING EXTRA Chiral Drugs	147
	Summary	148
	Key words	148
	Exercises	148a

An Overview of Organic Reactions

6-1	Kinds of Organic Reactions	149
6-2	How Organic Reactions Occur: Mechanisms	151
6-3	Radical Reactions	152
6-4	Polar Reactions	155
6-5	An Example of a Polar Reaction: Addition of HBr to Ethylene	159
6-6	Using Curved Arrows in Polar Reaction Mechanisms	162

6-7	Describing a Reaction: Equilibria, Rates, and Energy Changes	165
6-8	Describing a Reaction: Bond Dissociation Energies	169
6-9	Describing a Reaction: Energy Diagrams and Transition States	171
6-10	Describing a Reaction: Intermediates	174
6-11	A Comparison Between Biological Reactions and Laboratory Reactions	177
	SOMETHING EXTRA Where Do Drugs Come From?	179
	Summary	181
	Key words	181
	Exercises	181a

Practice Your Scientific Analysis and Reasoning I

The Chiral Drug Thalidomide | 182

Alkenes: Structure and Reactivity | 185

7-1	Industrial Preparation a	and Use of Alkenes	186
7-2	Calculating Degree of U	Jnsaturation	187
7-3	Naming Alkenes		189
7-4	Cis-Trans Isomerism i	n Alkenes	192
7-5	Alkene Stereochemistry	y and the E,Z Designation	194
7-6	Stability of Alkenes		198
7-7	Electrophilic Addition F	Reactions of Alkenes	201
7-8	Orientation of Electrop	hilic Additions: Markovnikov's Rule	205
7-9	Carbocation Structure	and Stability	208
7-10	The Hammond Postula	ate	211
7-11	Evidence for the Mecha	anism of Electrophilic	
	Additions: Carbocation	Rearrangements	214
	SOMETHING EXTRA	Bioprospecting: Hunting	
		for Natural Products	217
	Summary		218
	Key words		218
	Exercises		219

Alkenes: Reactions and Synthesis | 220

CHAPTER

8-1	Preparing Alkenes: A Preview of Elimination Reactions	221
8-2	Halogenation of Alkenes: Addition of X ₂	222
8-3	Halohydrins from Alkenes: Addition of HOX	225
8-4	Hydration of Alkenes: Addition of H ₂ O by Oxymercuration	227
8-5	Hydration of Alkenes: Addition of H ₂ O by Hydroboration	230
8-6	Reduction of Alkenes: Hydrogenation	235
8-7	Oxidation of Alkenes: Epoxidation and Hydroxylation	239
8-8	Oxidation of Alkenes: Cleavage to Carbonyl Compounds	242
8-9	Addition of Carbenes to Alkenes: Cyclopropane Synthesis	245
8-10	Radical Additions to Alkenes: Chain-Growth Polymers	247
8-11	Biological Additions of Radicals to Alkenes	251
8-12	Reaction Stereochemistry: Addition of H ₂ O to an Achiral Alkene	252
8-13	Reaction Stereochemistry: Addition of H ₂ O to a Chiral Alkene	255
	SOMETHING EXTRA Terpenes: Naturally Occurring Alkenes	257
	Summary	259
	Key words	259
	Learning Reactions	260
	Summary of Reactions	260
	Exercises	262

Alkynes: An Introduction to Organic Synthesis | 263

9-1	Naming Alkynes	264
9-2	Preparation of Alkynes: Elimination Reactions of Dihalides	265
9-3	Reactions of Alkynes: Addition of HX and X ₂	265
9-4	Hydration of Alkynes	268
9-5	Reduction of Alkynes	272
9-6	Oxidative Cleavage of Alkynes	275
9-7	Alkyne Acidity: Formation of Acetylide Anions	275
9-8	Alkylation of Acetylide Anions	277
9-9	An Introduction to Organic Synthesis	279
	SOMETHING EXTRA The Art of Organic Synthesis	283

CONTENTS			
		Summary Key words Summary of Reactions Exercises	284 284 285 286a
Organohalides	287		
21900	10-1	Names and Structures of Alkyl Halides	288
	10-2	Preparing Alkyl Halides from Alkanes: Radical Halogenation	290
CHAPTER	10-3	Preparing Alkyl Halides from Alkenes: Allylic Bromination	292
CHAPIER	10-4	Stability of the Allyl Radical: Resonance Revisited	294
10	10-5	Preparing Alkyl Halides from Alcohols	297
	10-6	Reactions of Alkyl Halides: Grignard Reagents	298
	10-7	Organometallic Coupling Reactions	300
	10-8	Oxidation and Reduction in Organic Chemistry	303
		SOMETHING EXTRA Naturally Occurring Organohalides	305
		Summary	307
		Key words	307
		Summary of Reactions	307
		Exercises	308
Reactions of Al Substitutions a	•	alides: Nucleophilic iminations 309	
×()	11-1	The Discovery of Nucleophilic Substitution Reactions	310
	11-2	The S _N 2 Reaction	313
	11-3	Characteristics of the S _N 2 Reaction	316
CHAPTER	11-4	The S _N 1 Reaction	323
11	11-5	Characteristics of the S _N 1 Reaction	327

CHA	PTER
	U

Martin Harvey/ Getty Images

CHAPTER

11-1	The Discovery of Nucleophilic Substitution Reactions	310
11-2	The S _N 2 Reaction	313
11-3	Characteristics of the S _N 2 Reaction	316
11-4	The S _N 1 Reaction	323
11-5	Characteristics of the S _N 1 Reaction	327
11-6	Biological Substitution Reactions	333
11-7	Elimination Reactions: Zaitsev's Rule	335
11-8	The E2 Reaction and the Deuterium Isotope Effect	338
11-9	The E2 Reaction and Cyclohexane Conformation	341
11-10	The El and ElcB Reactions	343
11-11	Biological Elimination Reactions	345
11-12	A Summary of Reactivity: S _N 1, S _N 2, E1, E1cB, and E2	345

	CONTENTS	XIII
SOMETHING EXTRA Green Chemistry		347
Summary		349
Key words		349
Summary of Reactions		350
Exercises	3	50a

Practice Your Scientific Analysis and Reasoning II

From Mustard Gas to Alkylating Anticancer Drugs | 351

Structure Determination: Mass Spectrometry and Infrared Spectroscopy | 354

12

12-1	Mass Spectrometry of Small Molecules:	
	Magnetic-Sector Instruments	355
12-2	Interpreting Mass Spectra	357
12-3	Mass Spectrometry of Some Common Functional Groups	362
12-4	Mass Spectrometry in Biological Chemistry:	
	Time-of-Flight (TOF) Instruments	367
12-5	Spectroscopy and the Electromagnetic Spectrum	368
12-6	Infrared Spectroscopy	371
12-7	Interpreting Infrared Spectra	373
12-8	Infrared Spectra of Some Common Functional Groups	376
	SOMETHING EXTRA X-Ray Crystallography	384
	Summary	385
	Key words	385
	Evercises	385

Structure Determination: Nuclear Magnetic Resonance Spectroscopy | 386

©EM Karuna/ Shutterstock.com	100			Que Printer
©EM Shutte	TF 13	-	54	-

13-1	Nuclear Magnetic Resonance Spectroscopy	386
13-2	The Nature of NMR Absorptions	389
13-3	The Chemical Shift	392
13-4	Chemical Shifts in ¹ H NMR Spectroscopy	394
13-5	Integration of ¹ H NMR Absorptions: Proton Counting	396

13-6	Spin-Spin Splitting in ¹ H NMR Spectra	397		
13-7	¹ H NMR Spectroscopy and Proton Equivalence	402		
13-8	More Complex Spin-Spin Splitting Patterns	404		
13-9	Uses of ¹ H NMR Spectroscopy	407		
13-10	¹³ C NMR Spectroscopy: Signal Averaging and FT-NMR	408		
13-11	Characteristics of ¹³ C NMR Spectroscopy			
13-12	DEPT ¹³ C NMR Spectroscopy			
13-13	Uses of ¹³ C NMR Spectroscopy	416		
	SOMETHING EXTRA Magnetic Resonance Imaging (MRI)	417		
	Summary	418		
	Key words	418		
	Exercises	419		

Conjugated Compounds and Ultraviolet Spectroscopy | 420

©DemarK/ Shutterstock.com

14

4-1	Stability of Conjugated Dienes: Molecular Orbital Theory	421
4-2	Electrophilic Additions to Conjugated Dienes:	
	Allylic Carbocations	425
4-3	Kinetic versus Thermodynamic Control of Reactions	428
4-4	The Diels-Alder Cycloaddition Reaction	430
4-5	Characteristics of the Diels-Alder Reaction	431
4-6	Diene Polymers: Natural and Synthetic Rubbers	437
4-7	Ultraviolet Spectroscopy	438
4-8	Interpreting Ultraviolet Spectra: The Effect of Conjugation	441
4-9	Conjugation, Color, and the Chemistry of Vision	442
	SOMETHING EXTRA Photolithography	444
	Summary	446
	Key words	446
	Summary of Reactions	447
	Exercises	447a

Practice Your Scientific Analysis and Reasoning III

Photodynamic Therapy (PDT) | 448

Benzene and Aromaticity | 45

T5

15-1	Naming Aromatic Compounds			
15-2	Structure and Stability of Benzene	456		
15-3	Aromaticity and the Hückel $4n + 2$ Rule	459		
15-4	Aromatic Ions	461		
15-5	Aromatic Heterocycles: Pyridine and Pyrrole	464		
15-6	Polycyclic Aromatic Compounds			
15-7	Spectroscopy of Aromatic Compounds			
	SOMETHING EXTRA Aspirin, NSAIDs, and COX-2 Inhibitors	474		
	Summary	476		
	Key words	476		
	Exercises	477		

Chemistry of Benzene: Electrophilic Aromatic Substitution | 478

16-1	Electrophilic Aromatic Substitution Reactions: Bromination	479		
16-2	Other Aromatic Substitutions	482		
16-3	Alkylation and Acylation of Aromatic Rings:			
	The Friedel-Crafts Reaction	488		
16-4	Substituent Effects in Electrophilic Substitutions	493		
16-5	Trisubstituted Benzenes: Additivity of Effects	503		
16-6	Nucleophilic Aromatic Substitution	505		
16-7	Benzyne			
16-8	Oxidation of Aromatic Compounds			
16-9	Reduction of Aromatic Compounds	513		
16-10	Synthesis of Polysubstituted Benzenes	514		
	SOMETHING EXTRA Combinatorial Chemistry	519		
	Summary	521		
	Key words	521		
	Summary of Reactions			
	Exercises	524		

Alcohols and Phenols | 525

©JManuel Murillo/ Shutterstock.o
--

17

17-1	Naming Alcohols and Phenols	526
17-2	Properties of Alcohols and Phenols	528
17-3	Preparation of Alcohols: A Review	533
17-4	Alcohols from Carbonyl Compounds: Reduction	
17-5	Alcohols from Carbonyl Compounds: Grignard Reaction	
17-6	Reactions of Alcohols	543
17-7	Oxidation of Alcohols	550
17-8	Protection of Alcohols	553
17-9	Phenols and Their Uses	555
17-10	Reactions of Phenols	557
17-11	Spectroscopy of Alcohols and Phenols	559
	SOMETHING EXTRA Ethanol: Chemical, Drug,	Poison 56 3
	Summary	564
	Key words	564
	Summary of Reactions	565
	Exercises	567

Ethers and Epoxides; Thiols and Sulfides | 568

18-1	Names and Properties of Ethers	
18-2	Preparing Ethers	
18-3	Reactions of Ethers: Acidic Cleavage	573
18-4	Reactions of Ethers: Claisen Rearrangement	
18-5	Cyclic Ethers: Epoxides	577
18-6	Reactions of Epoxides: Ring-Opening	578
18-7	Crown Ethers	583
18-8	Thiols and Sulfides	584
18-9	Spectroscopy of Ethers	588
	SOMETHING EXTRA Epoxy Resins and Adhesives	591
	Summary	592
	Key words	592
	Summary of Reactions	593
	Exercises	594a

Preview of Carbonyl Chemistry | 595

	Kinds of Carbonyl Compounds	595
П	Nature of the Carbonyl Group	597
П	General Reactions of Carbonyl Compounds	597
V	Summary	603

Aldehydes and Ketones: Nucleophilic Addition Reactions | 604

19

19-1	Naming Aldehydes and Ketones	605
19-2	Preparing Aldehydes and Ketones	607
19-3	Oxidation of Aldehydes and Ketones	609
19-4	Nucleophilic Addition Reactions of Aldehydes and Ketones	610
19-5	Nucleophilic Addition of H ₂ O: Hydration	614
19-6	Nucleophilic Addition of HCN: Cyanohydrin Formation	616
19-7	Nucleophilic Addition of Hydride and Grignard Reagents:	
	Alcohol Formation	617
19-8	Nucleophilic Addition of Amines: Imine and Enamine Formation	619
19-9	Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction	624
19-10	Nucleophilic Addition of Alcohols: Acetal Formation	626
19-11	Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction	630
19-12	Biological Reductions	633
19-13	Conjugate Nucleophilic Addition to $lpha,oldsymbol{eta}$ -Unsaturated	
	Aldehydes and Ketones	635
19-14	Spectroscopy of Aldehydes and Ketones	640
	SOMETHING EXTRA Enantioselective Synthesis	644
	Summary	646
	Key words	646
	Summary of Reactions	646
	Exercises	648a

Practice Your Scientific Analysis and Reasoning IV

Selective Serotonin Reuptake Inhibitors (SSRIs) | 649

Carboxylic Acids and Nitriles | 653

©Marie C Fields/ Shutterstock.com			
--------------------------------------	--	--	--

20

20-1	Naming Carboxylic Acids and Nitriles	654
20-2	Structure and Properties of Carboxylic Acids	656
20-3	Biological Acids and the Henderson-Hasselbalch Equation	660
20-4	Substituent Effects on Acidity	661
20-5	Preparing Carboxylic Acids	664
20-6	Reactions of Carboxylic Acids: An Overview	667
20-7	Chemistry of Nitriles	668
20-8	Spectroscopy of Carboxylic Acids and Nitriles	672
	SOMETHING EXTRA Vitamin C	674
	Summary	676
	Key words	676
	Summary of Reactions	677
	Exercises	678

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions | 679

21-1	Naming Carboxylic Acid Derivatives	680
21-2	Nucleophilic Acyl Substitution Reactions	683
21-3	Reactions of Carboxylic Acids	688
21-4	Chemistry of Acid Halides	696
21-5	Chemistry of Acid Anhydrides	70
21-6	Chemistry of Esters	703
21-7	Chemistry of Amides	709
21-8	Chemistry of Thioesters and Acyl Phosphates: Biological Carboxylic Acid Derivatives	713
21-9	Polyamides and Polyesters: Step-Growth Polymers	715
21-10	Spectroscopy of Carboxylic Acid Derivatives	718
	SOMETHING EXTRA β -Lactam Antibiotics	721
	Summary	723
	Key words	723
	Summary of Reactions	723
	Exercises	726

Carbonyl Alpha-Substitution Reactions | 727

CHAPTER 22

22-1	Keto–Enol Tautomerism	728
22-2	Reactivity of Enols: $lpha$ -Substitution Reactions	730
22-3	Alpha Halogenation of Aldehydes and Ketones	731
22-4	Alpha Bromination of Carboxylic Acids	734
22-5	Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation	735
22-6	Reactivity of Enolate Ions	
22-7	Alkylation of Enolate Ions	739
	SOMETHING EXTRA Barbiturates	748
	Summary	750
	Key words	750
	Summary of Reactions	751
	Exercises	752

Carbonyl Condensation Reactions | 7

23-1	Carbonyl Condensations: The Aldol Reaction	753
23-2	Carbonyl Condensations versus Alpha Substitutions	756
23-3	Dehydration of Aldol Products: Synthesis of Enones	757
23-4	Using Aldol Reactions in Synthesis	760
23-5	Mixed Aldol Reactions	761
23-6	Intramolecular Aldol Reactions	762
23-7	The Claisen Condensation Reaction	764
23-8	Mixed Claisen Condensations	766
23-9	Intramolecular Claisen Condensations:	
	The Dieckmann Cyclization	768
23-10	Conjugate Carbonyl Additions: The Michael Reaction	770
23-11	Carbonyl Condensations with Enamines: The Stork	
	Reaction	773
23-12	The Robinson Annulation Reaction	776
23-13	Some Biological Carbonyl Condensation Reactions	777
	SOMETHING EXTRA A Prologue to Metabolism	779
	Summary	781
	Key words	781
	Summary of Reactions	782
	Exercises	783

Practice Your Scientific Analysis and Reasoning V

Thymine in DNA | 784

Amines and Heterocycles

24-1	Naming Amines	787
24-2	Structure and Properties of Amines	790
24-3	Basicity of Amines	792
24-4	Basicity of Arylamines	795
24-5	Biological Amines and the Henderson-Hasselbalch Equation	797
24-6	Synthesis of Amines	798
24-7	Reactions of Amines	806
24-8	Reactions of Arylamines	810
24-9	Heterocyclic Amines	816
24-10	Spectroscopy of Amines	823
	SOMETHING EXTRA Green Chemistry II: Ionic Liquids	826
	Summary	828
	Key words	828
	Summary of Reactions	830
	Exercises	2315

Biomolecules: Carbohydrates | 832

25-1	Classification of Carbohydrates	833
25-2	Representing Carbohydrate Stereochemistry: Fischer Projections	834
25-3	D,L Sugars	838
25-4	Configurations of the Aldoses	840
25-5	Cyclic Structures of Monosaccharides: Anomers	844
25-6	Reactions of Monosaccharides	848
25-7	The Eight Essential Monosaccharides	856
25-8	Disaccharides	858
25-9	Polysaccharides and Their Synthesis	861
25-10	Some Other Important Carbohydrates	864
25-11	Cell-Surface Carbohydrates and Influenza Viruses	864
	SOMETHING EXTRA Sweetness	866

Biomolecules: Amino Acids, Peptides, and Proteins | 870

26

26-1	Structures of Amino Acids	871
26-2	Amino Acids and the Henderson-Hasselbalch Equation: Isoelectric Points	876
26-3	Synthesis of Amino Acids	879
26-4	Peptides and Proteins	881
26-5	Amino Acid Analysis of Peptides	884
26-6	Peptide Sequencing: The Edman Degradation	885
26-7	Peptide Synthesis	888
26-8	Automated Peptide Synthesis: The Merrifield	
	Solid-Phase Method	890
26-9	Protein Structure	893
26-10	Enzymes and Coenzymes	895
26-11	How Do Enzymes Work? Citrate Synthase	898
	SOMETHING EXTRA The Protein Data Bank	903
	Summary	904
	Key words	904
	Summary of Reactions	905
	Exercises	906a

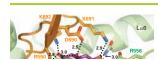
Biomolecules: Lipids 907

Waxes, Fats, and Oils	908
Soap	911
Phospholipids	913
Prostaglandins and Other Eicosanoids	915
Terpenoids	917
Steroids	926
Biosynthesis of Steroids	930
	Soap Phospholipids Prostaglandins and Other Eicosanoids Terpenoids Steroids

SOMETHING EXTRA	Saturated Fats, Cholesterol,	
	and Heart Disease	937
Summary		938
Key words		938
Exercises		938a

Practice Your Scientific Analysis and Reasoning VI

Melatonin and Serotonin | 939


Biomolecules: Nucleic Acids 942

Getty Images

28

28-1	Nucleotides and Nucleic Acids	942
28-2	Base Pairing in DNA: The Watson-Crick Model	945
28-3	Replication of DNA	947
28-4	Transcription of DNA	949
28-5	Translation of RNA: Protein Biosynthesis	951
28-6	DNA Sequencing	954
28-7	DNA Synthesis	956
28-8	The Polymerase Chain Reaction	959
	SOMETHING EXTRA DNA Fingerprinting	961
	Summary	962
	Key words	962
	Exercises	963

The Organic Chemistry of Metabolic Pathways | 964

CHAPTER

29-1	An Overview of Metabolism and Biochemical Energy	964
29-2	Catabolism of Triacylglycerols: The Fate of Glycerol	968
29-3	Catabolism of Triacylglycerols: $oldsymbol{eta}$ -Oxidation	972
29-4	Biosynthesis of Fatty Acids	977
29-5	Catabolism of Carbohydrates: Glycolysis	982
29-6	Conversion of Pyruvate to Acetyl CoA	990
29-7	The Citric Acid Cycle	993
29-8	Carbohydrate Biosynthesis: Gluconeogenesis	998
29-9	Catabolism of Proteins: Deamination	1005

CONTENTS

xxiii

Orbitals and Organic Chemistry: Pericyclic Reactions | 1013

30

30-1	Molecular Orbitals of Conjugated Pi Systems			
30-2	Electrocyclic Reactions	1016		
30-3	Stereochemistry of Thermal Electrocyclic Reactions	1018		
30-4	Photochemical Electrocyclic Reactions	1020		
30-5	Cycloaddition Reactions	1021		
30-6	Stereochemistry of Cycloadditions	1023		
30-7	Sigmatropic Rearrangements	1025		
30-8	Some Examples of Sigmatropic Rearrangements	1027		
30-9	A Summary of Rules for Pericyclic Reactions	1030		
	SOMETHING EXTRA Vitamin D, the Sunshine Vitamin	1031		
	Summary	1032		
	Key words	1032		
	Exercises	1033		

Practice Your Scientific Analysis and Reasoning VII

The Potent Antibiotic Traits of Endiandric Acid C | 1034

Synthetic Polymers | 1037

CHAPTER

Chain-Growth Polymers	1037
Stereochemistry of Polymerization: Ziegler–Natta Catalysts	1040
Copolymers	1041
Step-Growth Polymers	1043
Olefin Metathesis Polymerization	1046
Polymer Structure and Physical Properties	1048
	Stereochemistry of Polymerization: Ziegler–Natta Catalysts Copolymers Step-Growth Polymers Olefin Metathesis Polymerization

xxiv CONTENTS

SOME	THING EXTRA Biodegradable Polymers	1052
Summa	ary	1053
Key wo	rds	1053
Exercise	es	1054
APPENDIX A:	Nomenclature of Polyfunctional Organic Compounds	A-1
APPENDIX B:	Acidity Constants for Some Organic Compounds	A-9
APPENDIX C:	Glossary	A-11
APPENDIX D:	Answers to In-Text Problems	A-31
INDEX		1-1

PREFACE

I love writing, and I love explaining organic chemistry. This book is now in its ninth edition, but I'm still going over every word and every explanation, updating a thousand small details and trying to improve everything. My aim is always to refine the features that made earlier editions so successful, while adding new ones.

▶

Changes and Additions for This Ninth Edition

Text content has been updated for greater accuracy as a response to user feedback. Discussions of NMR spectroscopy and opportunities to practice mechanism problems have been expanded substantially for this ninth edition. Changes include:

- Discussions of interpreting mass spectra have been expanded with new spectroscopy problems included throughout the book.
- Discussions of the theory of nuclear magnetic resonance and interpretation of NMR data have been reorganized and expanded with new NMR problems.
- Why This Chapter now precedes the introduction in each chapter, immediately setting the context for what to expect.
- Mechanism problems at the ends of chapters are now grouped together so that they are easily located.
- Many new problems at the ends of chapters have been added, including 108 new mechanism-drawing practice problems and new spectroscopy and NMR problems.
- Deeper Look features have been changed to Something Extra, with updated coverage on each topic.
- Seven new Practice Your Scientific Analysis and Reasoning essays and corresponding questions modeled on professional tests such as the MCAT. Topics focus on the latest developments in the medical, pharmaceutical, or biological application of organic chemistry. Topics include: The Chiral Drug Thalidomide, From Mustard Gas to Alkylating Anticancer Drugs, Photodynamic Therapy (PDT), Selective Serotonin Reuptake Inhibitors (SSRIs), Thymine in DNA, Melatonin and Serotonin, and The Potent Antibiotic Traits of Endiandric Acid C.

In addition to seven new *Practice Your Scientific Analysis and Reasoning* sections, specific changes within individual chapters include:

- Chapter 2—Polar Covalent Bonds; Acids and Bases. Formal charge figures
 have been added for greater accuracy. New mechanism problems have
 been added at the end of the chapter.
- Chapter 3—Organic Compounds: Alkanes and Their Stereochemistry.
 Figures and steps for naming alkanes have been revised based on user
 feedback.
- Chapter 6—An Overview of Organic Reactions. New problems have been added to the end of the chapter, including new reaction mechanism problems.
- Chapter 7—Alkenes: Structure and Reactivity. Alkene Stereochemistry has been updated with expanded examples for practicing E and Z geometry. Additional practice problems on mechanisms have been added to the end of the chapter.
- Chapter 8—Alkenes: Reactions and Synthesis. New mechanism practice problems have been added at the end of the chapter.
- Chapter 9—Alkynes: An Introduction to Organic Synthesis. Sections on alkyne nomenclature and reactions of alkynes have been updated for greater accuracy. New mechanism problems have been added to the end of the chapter.
- Chapter 10—Organohalides. Suzuki-Miyaura reactions, curved-arrow drawings, and electron-pushing mechanisms are emphasized in new problems at the end of the chapter.
- Chapter 11—Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations. There are additional end-of-chapter problems, with particular focus on elimination-reaction mechanisms.
- Chapter 12—Structure Determination: Mass Spectrometry and Infrared Spectroscopy. Expanded discussion on interpreting mass spectra, additional examples, and new problems have been added.
- Chapter 13—Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Discussions on the theory of nuclear magnetic resonance and the interpretation of NMR data have been expanded and reorganized, and new NMR problems have been added.
- Chapter 14—Conjugated Compounds and Ultraviolet Spectroscopy. New problems have been added to the end of the chapter, including mechanism problems.
- Chapter 15—Benzene and Aromaticity. The discussion of spectroscopic characterization of benzene derivatives has been expanded. New mechanism and spectroscopy problems have been added to the end of the chapter.
- Chapter 16—Chemistry of Benzene: Electrophilic Aromatic Substitution.
 New problems have been added to the end of the chapter, including mechanism practice problems.
- Chapter 17—Alcohols and Phenols. New spectroscopy examples and problems have been added, along with new mechanism problems at the end of the chapter.
- Chapter 18—Ethers and Epoxides; Thiols and Sulfides. New spectroscopy examples and problems have been added, along with new mechanism problems at the end of the chapter.

- Chapter 19—Aldehydes and Ketones: Nucleophilic Addition Reactions. The discussion of IR and NMR spectroscopy of aldehydes/ketones has been expanded. New NMR problems and mechanism practice problems have been added.
- Chapter 20—Carboxylic Acids and Nitriles. The discussion of IR and NMR spectroscopy of carboxylic acid has been updated. New problems have been added to the end of the chapter, including mechanism and spectroscopy problems.
- Chapter 21—Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions. The discussion of electronic effects in the IR and NMR spectroscopy of carboxylic acid derivatives has been expanded with two new end-of-chapter IR spectroscopy problems, along with new mechanism problems. Four new worked examples on synthesizing esters, amides, and amines have also been added.
- Chapter 22 and Chapter 23—Carbonyl Alpha-Substitution Reactions; Carbonyl Condensation Reactions. New problems have been added to the end of the chapter, including additional mechanism practice problems.
- Chapter 24—Amines and Heterocycles. The discussion of IR and NMR spectroscopy of amines has been updated, and new spectroscopy and mechanism practice problems have been added to the end of the chapter.
- Chapter 25—Biomolecules: Carbohydrates. The coverage of other important carbohydrates was expanded, and the worked examples related to drawing Fischer projections were revised.
- Chapter 26-Biomolecules: Amino Acids, Peptides, and Proteins. The Something Extra feature on the Protein Data Bank was revised and updated to make it more current.
- Chapter 28—Biomolecules: Nucleic Acids. Content on DNA sequencing and DNA synthesis was updated and revised.

Features

- The "Why This Chapter?" section is a short paragraph that appears before the introduction to every chapter and tells students why the material about to be covered is important.
- Each Worked Example includes a Strategy and a detailed Solution and is followed by problems for students to try on their own. This book has more than 1800 in-text and end-of-chapter problems.
- An overview chapter, A Preview of Carbonyl Chemistry, follows Chapter 18 and emphasizes the idea that studying organic chemistry requires both summarizing and looking ahead.
- The Visualizing Chemistry Problems that begin the exercises at the end of each chapter offer students an opportunity to see chemistry in a different way by visualizing molecules rather than by simply interpreting structural formulas.
- New Mechanism Problems sections were added to the end-of-chapter problems for most of the chapters. Mechanism-type problems are now grouped together under this topic title.

- The new *Practice Your Scientific Analysis and Reasoning* feature provides two-page essays and corresponding professional exam-style questions on special topics related to medical, pharmaceutical, and biological applications of organic chemistry. These sections are located at various points throughout the book. Essays and questions touch on organic chemistry content from preceding chapters. The multiple-choice format of the questions is modeled on professional exams such as the MCAT. The focus is on reinforcing the foundations of organic chemistry through practical application and real-world examples.
- Applied essays called Something Extra complement the text and highlight applications to chemistry. They include, "Where Do Drugs Come From?" in Chapter 6 and "Molecular Mechanics" in Chapter 4.
- Summaries and Key Word lists help students by outlining the key concepts of each chapter.
- Summaries of Reactions at the ends of appropriate chapters bring together the key reactions from the chapter in one complete list.

Alternate Editions

Organic Chemistry, Ninth Edition Hybrid Version with Access (24 months) to OWLv2 with MindTap Reader

ISBN: 9781305084445

This briefer, paperbound version of *Organic Chemistry*, Ninth Edition does not contain the end-of-chapter problems, which can be assigned in OWL, the online homework and learning system for this book. Access to OWLv2 and the MindTap Reader eBook is included with the Hybrid version. The MindTap Reader version includes the full text, with all end-of-chapter questions and problem sets.

Supporting Materials

Please visit http://www.cengage.com/chemistry/mcmurry/oc9e to learn about student and instructor resources for this text, including custom versions and laboratory manuals.

Special Contributions

This revision would not have been possible without the work of several key contributors. Special thanks go to KC Russell of Northern Kentucky University for writing the many new mechanism questions that appear in this edition; to James S. Vyvyan of Western Washington University for reshaping the NMR and spectroscopy discussions and corresponding problems throughout the book; to Andrew Frazer of the University of Central Florida for creating the new *Practice Your Scientific Analysis and Reasoning* sections and Gordon W. Gribble of Dartmouth College for assisting in their development; and to Jordan

L. Fantini of Denison University for carefully reviewing the new material and incarnations of the manuscript as it made its way through production.

Reviewers

This book has benefited greatly from the helpful comments and suggestions of those who have reviewed it. They include:

Reviewers of the Ninth Edition

Peter Bell, Tarleton State University

Andrew Frazer, University of Central Florida

Stephen Godleski, State University of New York-Brockport

Susan Klein, Manchester College

Barbara Mayer, California State University–Fresno

James Miranda, Sacramento State University

Pauline Schwartz, University of New Haven

Gabriela Smeureanu, Hunter College

Douglas C. Smith, California State University–San Bernardino

Linfeng Xie, University of Wisconsin-Oshkosh

Yan Zhao, Iowa State University

Reviewers of the Eighth Edition

Andrew Bolig, San Francisco State University

Indraneel Ghosh, University of Arizona

Stephen Godleski, State University of New York-Brockport

Gordon Gribble, Dartmouth College

Matthew E. Hart, Grand Valley State University

Darren Johnson, University of Oregon

Ernest G. Nolen, Colgate University

Douglas C. Smith, California State University-San Bernardino

Gary Sulikowski, Vanderbilt University

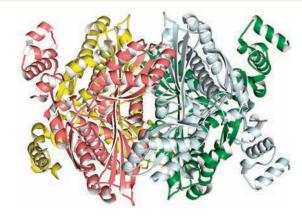
Richard Weiss, Georgetown University

Yan Zhao, Iowa State University

Reviewers of the Seventh Edition

Arthur W. Bull, Oakland University

Robert Coleman, Ohio State University


Nicholas Drapela, Oregon State University

Christopher Hadad, Ohio State University

Eric J. Kantorowski, California Polytechnic State University
James J. Kiddle, Western Michigan University
Joseph B. Lambert, Northwestern University
Dominic McGrath, University of Arizona
Thomas A. Newton, University of Southern Maine
Michael Rathke, Michigan State University
Laren M. Tolbert, Georgia Institute of Technology

Structure and Bonding

The enzyme HMG–CoA reductase, shown here as a so-called ribbon model, catalyzes a crucial step in the body's synthesis of cholesterol. Understanding how this enzyme functions has led to the development of drugs credited with saving millions of lives.

WHY THIS CHAPTER?

We'll ease into the study of organic chemistry by first reviewing some ideas about atoms, bonds, and molecular geometry that you may recall from your general chemistry course. Much

of the material in this chapter and the next is likely to be familiar to you, but it's nevertheless a good idea to make sure you understand it before moving on.

What is organic chemistry, and why should you study it? The answers to these questions are all around you. Every living organism is made of organic chemicals. The proteins that make up your hair, skin, and muscles; the DNA that controls your genetic heritage; the foods that nourish you; and the medicines that heal you are all organic chemicals. Anyone with a curiosity about life and living things, and anyone who wants to be a part of the remarkable advances now occurring in medicine and the biological sciences, must first understand organic chemistry. Look at the following drawings for instance, which show the chemical structures of some molecules whose names might be familiar to you. Although the drawings may appear unintelligible at this point, don't worry. Before long, they'll make perfectly good sense, and you'll soon be drawing similar structures for any substance you're interested in.

CONTENTS

- 1-1 Atomic Structure: The Nucleus
- 1-2 Atomic Structure: Orbitals
- **1-3** Atomic Structure: Electron Configurations
- 1-4 Development of Chemical Bonding Theory
- 1-5 Describing Chemical Bonds: Valence Bond Theory
- 1-6 sp³ Hybrid Orbitals and the Structure of Methane
- 1-7 sp³ Hybrid Orbitals and the Structure of Ethane
- 1-8 sp² Hybrid Orbitals and the Structure of Ethylene
- sp Hybrid Orbitals and the Structure of Acetylene
- 1-10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
- 1-11 Describing Chemical Bonds: Molecular Orbital Theory
- **1-12** Drawing Chemical Structures

SOMETHING EXTRA

Organic Foods: Risk versus Benefit

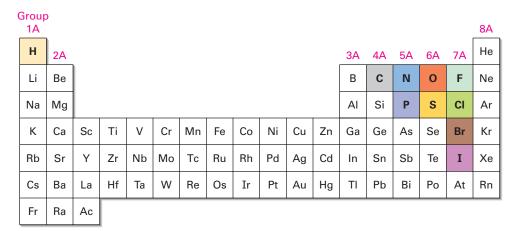
$$\begin{array}{c} CH_3 \\ H \\ H \end{array}$$

Cholesterol

The foundations of organic chemistry date from the mid-1700s, when chemistry was evolving from an alchemist's art into a modern science. Little was known about chemistry at that time, and the behavior of the "organic" substances isolated from plants and animals seemed different from that of the "inorganic" substances found in minerals. Organic compounds were generally low-melting solids and were usually more difficult to isolate, purify, and work with than high-melting inorganic compounds.

Benzylpenicillin

To many chemists, the simplest explanation for the difference in behavior between organic and inorganic compounds was that organic compounds contained a peculiar "vital force" as a result of their origin in living sources. Because of this vital force, chemists believed, organic compounds could not be prepared and manipulated in the laboratory as could inorganic compounds. As early as 1816, however, this vitalistic theory received a heavy blow when Michel Chevreul found that soap, prepared by the reaction of alkali with animal fat, could be separated into several pure organic compounds, which he termed *fatty acids*. For the first time, one organic substance (fat) was converted into others (fatty acids plus glycerin) without the intervention of an outside vital force.


Animal fat
$$\xrightarrow{\text{NaOH}}$$
 Soap + Glycerin
Soap $\xrightarrow{\text{H}_3\text{O}^+}$ "Fatty acids"

Little more than a decade later, the vitalistic theory suffered further when Friedrich Wöhler discovered in 1828 that it was possible to convert the "inorganic" salt ammonium cyanate into the "organic" substance urea, which had previously been found in human urine.

By the mid-1800s, the weight of evidence was clearly against the vitalistic theory and it was clear that there was no fundamental difference between organic and inorganic compounds. The same fundamental principles explain the behaviors of all substances, regardless of origin or complexity. The only distinguishing characteristic of organic compounds is that all contain the element carbon.

Organic chemistry, then, is the study of carbon compounds. But why is carbon special? Why, of the more than 50 million presently known chemical

compounds, do most of them contain carbon? The answers to these questions come from carbon's electronic structure and its consequent position in the periodic table (FIGURE 1-1). As a group 4A element, carbon can share four valence electrons and form four strong covalent bonds. Furthermore, carbon atoms can bond to one another, forming long chains and rings. Carbon, alone of all elements, is able to form an immense diversity of compounds, from the simple methane, with one carbon atom, to the staggeringly complex DNA, which can have more than 100 million carbons.

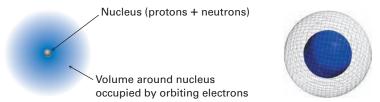


FIGURE 1-1 The position of **carbon** in the periodic table. Other elements commonly found in organic compounds are shown in the colors typically used to represent them.

Of course, not all carbon compounds are derived from living organisms. Modern chemists have developed a remarkably sophisticated ability to design and synthesize new organic compounds in the laboratory—medicines, dyes, polymers, and a host of other substances. Organic chemistry touches the lives of everyone; its study can be a fascinating undertaking.

1-1 Atomic Structure: The Nucleus

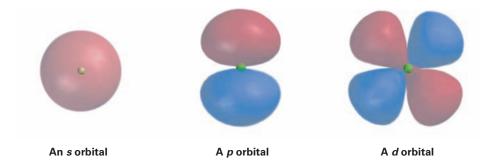
As you probably know from your general chemistry course, an atom consists of a dense, positively charged nucleus surrounded at a relatively large distance by negatively charged electrons (FIGURE 1-2). The nucleus consists of subatomic particles called protons, which are positively charged, and neutrons, which are electrically neutral. Because an atom is neutral overall, the number of positive protons in the nucleus and the number of negative electrons surrounding the nucleus are the same.

FIGURE 1-2 A schematic view of an atom. The dense, positively charged nucleus contains most of the atom's mass and is surrounded by negatively charged electrons. The three-dimensional view on the right shows calculated electron-density surfaces. Electron density increases steadily toward the nucleus and is 40 times greater at the blue solid surface than at the gray mesh surface.

Although extremely small—about 10^{-14} to 10^{-15} meter (m) in diameter the nucleus nevertheless contains essentially all the mass of the atom. Electrons have negligible mass and circulate around the nucleus at a distance of approximately 10^{-10} m. Thus, the diameter of a typical atom is about 2×10^{-10} m, or 200 picometers (pm), where 1 pm = 10^{-12} m. To give you an idea of how small this is, a thin pencil line is about 3 million carbon atoms wide. Many organic chemists and biochemists, particularly in the United States, still use the unit angstrom (Å) to express atomic distances, where 1 Å = 100 pm = 10^{-10} m, but we'll stay with the SI unit picometer in this book.

A specific atom is described by its atomic number (Z), which gives the number of protons (or electrons) it contains, and its mass number (A), which gives the total number of protons and neutrons in its nucleus. All the atoms of a given element have the same atomic number—1 for hydrogen, 6 for carbon, 15 for phosphorus, and so on—but they can have different mass numbers depending on how many neutrons they contain. Atoms with the same atomic number but different mass numbers are called **isotopes**.

The weighted-average mass in atomic mass units (amu) of an element's naturally occurring isotopes is called atomic mass (or atomic weight)— 1.008 amu for hydrogen, 12.011 amu for carbon, 30.974 amu for phosphorus, and so on. Atomic masses of the elements are given in the periodic table in the front of this book.


1-2 Atomic Structure: Orbitals

How are the electrons distributed in an atom? You might recall from your general chemistry course that, according to the quantum mechanical model, the behavior of a specific electron in an atom can be described by a mathematical expression called a wave equation—the same type of expression used to describe the motion of waves in a fluid. The solution to a wave equation is called a wave function, or **orbital**, and is denoted by the Greek letter psi (ψ) .

By plotting the square of the wave function, ψ^2 , in three-dimensional space, an orbital describes the volume of space around a nucleus that an electron is most likely to occupy. You might therefore think of an orbital as looking like a photograph of the electron taken at a slow shutter speed. In such a photo, the orbital would appear as a blurry cloud, indicating the region of space where the electron has been. This electron cloud doesn't have a sharp boundary, but for practical purposes we can set its limits by saying that an orbital represents the space where an electron spends 90% to 95% of its time.

What do orbitals look like? There are four different kinds of orbitals, denoted s, p, d, and f, each with a different shape. Of the four, we'll be concerned primarily with s and p orbitals because these are the most common in organic and biological chemistry. An s orbital is spherical, with the nucleus at its center; a p orbital is dumbbell-shaped; and four of the five d orbitals are cloverleaf-shaped, as shown in FIGURE 1-3. The fifth d orbital is shaped like an elongated dumbbell with a doughnut around its middle.

The orbitals in an atom are organized into different electron shells, centered around the nucleus and having successively larger size and energy. Different shells contain different numbers and kinds of orbitals, and each orbital

FIGURE 1-3 Representations of s, p, and d orbitals. An s orbital is spherical, a p orbital is dumbbell-shaped, and four of the five d orbitals are cloverleaf-shaped. **Different lobes** of p and d orbitals are often drawn for convenience as teardrops, but their actual shape is more like that of a doorknob, as indicated.

within a shell can be occupied by two electrons. The first shell contains only a single s orbital, denoted 1s, and thus holds only 2 electrons. The second shell contains one 2s orbital and three 2p orbitals and thus holds a total of 8 electrons. The third shell contains a 3s orbital, three 3p orbitals, and five 3d orbitals, for a total capacity of 18 electrons. These orbital groupings and their energy levels are shown in FIGURE 1-4.

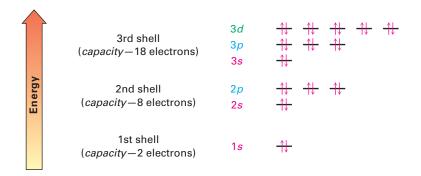


FIGURE 1-4 The energy levels of electrons in an atom. The first shell holds a maximum of 2 electrons in one 1s orbital; the second shell holds a maximum of 8 electrons in one 2s and three 2p orbitals; the third shell holds a maximum of 18 electrons in one 3s, three 3p, and five 3d orbitals; and so on. The two electrons in each orbital are represented by up and down arrows, ↑↓. Although not shown, the energy level of the 4s orbital falls between 3p and 3d.

The three different p orbitals within a given shell are oriented in space along mutually perpendicular directions, denoted p_x , p_y , and p_z . As shown in **FIGURE 1-5**, the two lobes of each p orbital are separated by a region of zero electron density called a **node**. Furthermore, the two orbital regions separated by the node have different algebraic signs, + and -, in the wave function, as represented by the different colors in Figure 1-5. We'll see in **Section 1-11** that these algebraic signs for different orbital lobes have important consequences with respect to chemical bonding and chemical reactivity.

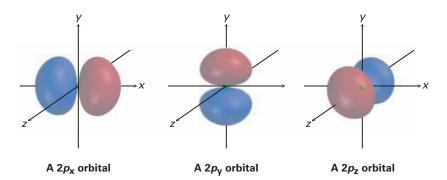


FIGURE 1-5 Shapes of the 2*p* orbitals. Each of the three mutually perpendicular, dumbbell-shaped orbitals has **two lobes** separated by a node. The two lobes have different algebraic signs in the corresponding wave function, as indicated by the different colors.

1-3 Atomic Structure: Electron Configurations

The lowest-energy arrangement, or **ground-state electron configuration**, of an atom is a listing of the orbitals occupied by its electrons. We can predict this arrangement by following three rules.

RULE 1

The lowest-energy orbitals fill up first, according to the order $1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d$, a statement called the *Aufbau principle*. Note that the 4s orbital lies between the 3p and 3d orbitals.

RULE 2

Electrons act in some ways as if they were spinning around an axis, somewhat like how the earth spins. This spin can have two orientations, denoted as up (\uparrow) and down (\downarrow) . Only two electrons can occupy an orbital, and they must be of opposite spin, a statement called the *Pauli exclusion principle*.

RULE 3

If two or more empty orbitals of equal energy are available, one electron occupies each with spins parallel until all orbitals are half-full, a statement called *Hund's rule*.

Some examples of how these rules apply are shown in TABLE 1-1. Hydrogen, for instance, has only one electron, which must occupy the lowest-energy orbital. Thus, hydrogen has a 1s ground-state configuration. Carbon has six electrons and the ground-state configuration $1s^2\ 2s^2\ 2p_{\rm x}^{\ 1}\ 2p_{\rm y}^{\ 1}$, and so forth. Note that a superscript is used to represent the number of electrons in a particular orbital.

PROBLEM 1-1

Give the ground-state electron configuration for each of the following elements:

(a) Oxygen (b) Nitrogen (c) Sulfur

PROBLEM 1-2

How many electrons does each of the following elements have in its outermost electron shell?

(a) Magnesium (b) Cobalt (c) Selenium

TABLE 1-1 Ground-State Electron Configurations of Some Elements					
Element	Atomic number	Configuration	Element	Atomic number	Configuration
Hydrogen Carbon	1 6	1s +	Phosphorus	15	3p ↑ ↑ ↑ 3s ↑
		2s ↑↓ 1s ↑↓			$ \begin{array}{cccc} 2p & & & & \downarrow \downarrow \\ 2s & & & \downarrow \downarrow \\ 1s & & & \downarrow \downarrow \end{array} $

1-4 Development of Chemical Bonding Theory

By the mid-1800s, the new science of chemistry was developing rapidly and chemists had begun to probe the forces holding compounds together. In 1858, August Kekulé and Archibald Couper independently proposed that, in all organic compounds, carbon is *tetravalent*—it always forms four bonds when it joins other elements to form stable compounds. Furthermore, said Kekulé, carbon atoms can bond to one another to form extended chains of linked atoms. In 1865, Kekulé provided another major advance when he suggested that carbon chains can double back on themselves to form *rings* of atoms.

Although Kekulé and Couper were correct in describing the tetravalent nature of carbon, chemistry was still viewed in a two-dimensional way until 1874. In that year, Jacobus van 't Hoff and Joseph Le Bel added a third dimension to our ideas about organic compounds when they proposed that the four bonds of carbon are not oriented randomly but have specific spatial directions. Van 't Hoff went even further and suggested that the four atoms to which carbon is bonded sit at the corners of a regular tetrahedron, with carbon in the center.

A representation of a tetrahedral carbon atom is shown in FIGURE 1-6. Note the conventions used to show three-dimensionality: solid lines represent bonds in the plane of the page, the heavy wedged line represents a bond coming out of the page toward the viewer, and the dashed line represents a bond receding back behind the page, away from the viewer. These representations will be used throughout the text.

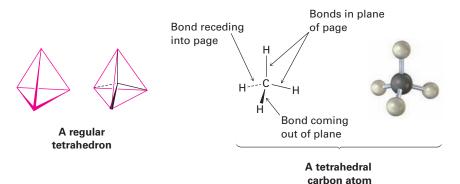
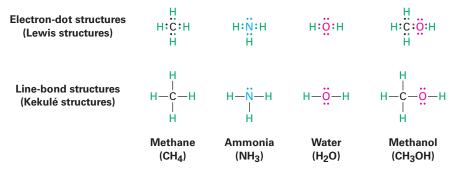


FIGURE 1-6 A representation of a tetrahedral carbon atom. The solid lines represent bonds in the plane of the paper, the heavy wedged line represents a bond coming out of the plane of the page, and the dashed line represents a bond going back behind the plane of the page.


Why, though, do atoms bond together, and how can bonds be described electronically? The *why* question is relatively easy to answer: atoms bond together because the compound that results is more stable and lower in energy than the separate atoms. Energy—usually as heat—always flows out of the chemical system when a bond forms. Conversely, energy must be put into the chemical system to break a bond. Making bonds always releases energy, and breaking bonds always absorbs energy. The *how* question is more difficult. To answer it, we need to know more about the electronic properties of atoms.

We know through observation that eight electrons (an electron *octet*) in an atom's outermost shell, or **valence shell**, impart special stability to the noblegas elements in group 8A of the periodic table: Ne (2 + 8); Ar (2 + 8 + 8); Kr (2 + 8 + 18 + 8). We also know that the chemistry of main-group elements

is governed by their tendency to take on the electron configuration of the nearest noble gas. The alkali metals in group 1A, for example, achieve a noble-gas configuration by losing the single s electron from their valence shell to form a cation, while the halogens in group 7A achieve a noble-gas configuration by gaining a p electron to fill their valence shell and form an anion. The resultant ions are held together in compounds like Na⁺ Cl⁻ by an electrostatic attraction that we call an *ionic bond*.

But how do elements closer to the middle of the periodic table form bonds? Look at methane, CH_4 , the main constituent of natural gas, for example. The bonding in methane is not ionic because it would take too much energy for carbon $(1s^2\ 2s^2\ 2p^2)$ either to gain or lose four electrons to achieve a noble-gas configuration. As a result, carbon bonds to other atoms, not by gaining or losing electrons, but by sharing them. Such a shared-electron bond, first proposed in 1916 by G. N. Lewis, is called a **covalent bond**. The neutral collection of atoms held together by covalent bonds is called a **molecule**.

A simple way of indicating the covalent bonds in molecules is to use what are called *Lewis structures*, or **electron-dot structures**, in which the valence-shell electrons of an atom are represented as dots. Thus, hydrogen has one dot representing its 1s electron, carbon has four dots $(2s^2 2p^2)$, oxygen has six dots $(2s^2 2p^4)$, and so on. A stable molecule results whenever a noble-gas configuration is achieved for all the atoms—eight dots (an octet) for main-group atoms or two dots for hydrogen. Simpler still is the use of *Kekulé structures*, or **line-bond structures**, in which a two-electron covalent bond is indicated as a line drawn between atoms.

The number of covalent bonds an atom forms depends on how many additional valence electrons it needs to reach a noble-gas configuration. Hydrogen has one valence electron (1s) and needs one more to reach the helium configuration (1s²), so it forms one bond. Carbon has four valence electrons $(2s^2 2p^2)$ and needs four more to reach the neon configuration $(2s^2 2p^6)$, so it forms four bonds. Nitrogen has five valence electrons $(2s^2 2p^3)$, needs three more, and forms three bonds; oxygen has six valence electrons $(2s^2 2p^4)$, needs two more, and forms two bonds; and the halogens have seven valence electrons, need one more, and form one bond.

Valence electrons that are not used for bonding are called **lone-pair electrons**, or *nonbonding electrons*. The nitrogen atom in ammonia, NH₃, for instance, shares six valence electrons in three covalent bonds and has its remaining two valence electrons in a nonbonding lone pair. As a time-saving shorthand, nonbonding electrons are often omitted when drawing line-bond structures, but you still have to keep them in mind since they're often crucial in chemical reactions.

Predicting the Number of Bonds Formed by an Atom

Worked Example 1-1

How many hydrogen atoms does phosphorus bond to in forming phosphine, PH??

Strategy

Identify the periodic group of phosphorus, and find from that how many electrons (bonds) are needed to make an octet.

Solution

Phosphorus is in group 5A of the periodic table and has five valence electrons. It thus needs to share three more electrons to make an octet and therefore bonds to three hydrogen atoms, giving PH₃.

Drawing Electron-Dot and Line-Bond Structures

Worked Example 1-2

Draw both electron-dot and line-bond structures for chloromethane, CH₃Cl.

Strategy

Remember that a bond—that is, a pair of shared electrons—is represented as a line between atoms.

Solution

Hydrogen has one valence electron, carbon has four valence electrons, and chlorine has seven valence electrons. Thus, chloromethane is represented as

PROBLEM 1-3

Draw a molecule of chloroform, CHCl₃, using solid, wedged, and dashed lines to show its tetrahedral geometry.